ABSTRACT

Time profiles of ClN₃, ClN₃(v_{asym}), and NCl(a) were recorded under conditions where complete and incomplete loss of the parent ClN₃ occurred. Laser photolysis at 248 and 193 nm, flashlamp photolysis, and an electric discharge cavity were used to initiate dissociation. A new channel for the reaction of ClN₃ + NCl(a) was found which produces ClN₃(v_{asym}) with a rate of 1.4·10⁻¹² cm³/(molec·s). The channel responsible for the decomposition of ClN₃ generates NCl(a) with unity yield.

The bimolecular rate of $ClN_3(v_{asym}) + NCl(a) \longrightarrow 2 \cdot NCl(a) + N_2(v)$ and radiative rate from $ClN_3(v_{asym})$ are $1.1 \cdot 10^{-11}$ and 2000 s⁻¹ respectively. Rates for the reactions: $ClN_3(v_{asym}) + N_2(v) \longrightarrow ClN_3(2 \cdot v_{asym}) + N_2$, $ClN_3(2 \cdot v_{asym}) + N_2(v) \longrightarrow NCl(a) + N_2(v) + N_2$, and radiative rate of $ClN_3(2 \cdot v_{asym})$ are estimated to be $2 \cdot 10^{-13}$, $2 \cdot 10^{-13}$ cm³/(molec·s), and 2000 s⁻¹ respectively. A kinetic model incorporating the reactions of state-selected ClN₃, NCl, N₂, Cl, and N₃ is developed that gives reasonable agreement with experiment. The model incorporates chains carried by NCl(a), N₂(v), and N₃. The NCl(a) chain dominates the decomposition of ClN₃ at low densities; the N₂(v) chain becomes important at high N₂(v) densities. The latter may be of significance for a chemical NCl-I laser system. The uncertainty in the products of NCl(a) self-quenching (either 2·Cl or Cl₂) limits our knowledge of the Cl atom density. The chain carried by Cl and N₃ was found to play a minor role in the decomposition even with NCl(a) selfquenching producing Cl atoms.