

The 1996 Nobel Prize for Chemistry was awarded to Robert Curl, Harold Kroto, and Richard Smalley for their discovery of a new form of carbon — fullerenes. The first fullerene discovered was Buckminster fullerene, C_{60} , which resembles a soccer ball. Many fullerenes exist, from C20 to long chain nanotubes. The patterns on these pages produce C_{60} , C_{70} , C_{80} , and C_{90} to illustrate the bonding and arrangement of pentagons and hexagons in fullerenes.

Instructions

- ① Photocopy this page onto card stock or glue a piece of construction paper to the back.
- ② Cut around the outside lines.
- 3 Cut along the dotted lines.
- ① Cut out the hexagons with '5' on them.
- ⑤ Slightly fold all the joining lines (if possible).
- © Overlap the \star hexagons and glue.

The 1996 Nobel Prize for Chemistry was awarded to Robert Curl, Harold Kroto, and Richard Smalley for their discovery of a new form of carbon — fullerenes. The first fullerene discovered was Buckminster fullerene, C_{60} , which resembles a soccer ball. Many fullerenes exist, from C20 to long chain nanotubes. The patterns on these pages produce C_{60} , C_{70} , C_{80} , and C_{90} to illustrate the bonding and arrangement of pentagons and hexagons in fullerenes.

Instructions

- ① Photocopy this page onto card stock or glue a piece of construction paper to the back.
- ② Cut around the outside lines.
- 3 Cut along the dotted lines.
- ① Cut out the hexagons with '5' on them.
- ⑤ Slightly fold all the joining lines (if possible).
- ⑥ Overlap the ★ hexagons and glue.

The 1996 Nobel Prize for Chemistry was awarded to Robert Curl, Harold Kroto, and Richard Smalley for their discovery of a new form of carbon — fullerenes. The first fullerene discovered was Buckminster fullerene, C₆₀, which resembles a soccer ball. Many fullerenes exist, from C20 to long chain nanotubes. The patterns on these pages produce C₆₀, C₇₀, C₈₀, and C₉₀ to illustrate the bonding and arrangement of pentagons and hexagons in fullerenes.

Instructions

- ① Photocopy this page onto card stock or glue a piece of construction paper to the back.
- ② Cut around the outside lines.
- 3 Cut along the dotted lines.
- ① Cut out the hexagons with '5' on them.
- © Slightly fold all the joining lines (if possible).
- ⑥ Overlap the ★ hexagons and glue.

The 1996 Nobel Prize for Chemistry was awarded to Robert Curl, Harold Kroto, and Richard Smalley for their discovery of a new form of carbon — fullerenes. The first fullerene discovered was Buckminster fullerene, C_{60} , which resembles a soccer ball. Many fullerenes exist, from C20 to long chain nanotubes. The patterns on these pages produce C_{60} , C_{70} , C_{80} , and C_{90} to illustrate the bonding and arrangement of pentagons and hexagons in fullerenes.

Instructions

- ① Photocopy this page onto card stock or glue a piece of construction paper to the back.
- ② Cut around the outside lines.
- 3 Cut along the dotted lines.
- ① Cut out the hexagons with '5' on them.
- ⑤ Slightly fold all the joining lines (if possible).
- ⑥ Overlap the ★ hexagons and glue.

